top of page
搜尋

8 January 2020

  • hiberna6
  • 2022年6月18日
  • 讀畢需時 1 分鐘

Improved sub-ppm acetone sensing properties of SnO2 nanowire-based sensor by attachment of Co3O4 nanoparticles

Co3O4 nanoparticle-attached SnO2 nanowires are synthesized to fabricate highly sensitive

acetone gas sensor by vapor-liquid-solid (VLS), sol-gel, and thermal annealing processes. To

analyze enhanced acetone gas sensing responses, Co3O4 nanoparticles are attached SnO2

nanowires, and several samples are synthesized followed by the cycles of Co3O4 nanoparticle

attachment process. The sensing response of Co3O4 nanoparticle-attached SnO2 nanowires,

which are one time performed Co3O4 nanoparticle attachment process, is improved by 7

times compared with as-synthesized SnO2 nanowires when exposed to 50 ppm acetone gas.

In particular, when exposed to 0.5 ppm acetone gas, as-synthesized SnO2 nanowires present

an extremely low response — close to negligible. However, when Co3O4 nanoparticles are

attached, the response is improved drastically. Furthermore, the sensing selectivity toward

acetone gas is improved compared with its counterpart. This improved sensing property

is derived from the increasing variation in the surface depletion area located in the p-n

heterojunction.

 
 
 

Comentários


©2023 by Daniel Tenant. Proudly created with Wix.com

bottom of page